Home Search Collections Journals About Contact us My IOPscience

Correlation-crystal-field analysis of Nd³⁺(4f³) energy-level structures in various crystal hosts

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 5919

(http://iopscience.iop.org/0953-8984/6/30/011)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.147 The article was downloaded on 12/05/2010 at 19:01

Please note that terms and conditions apply.

Correlation-crystal-field analysis of Nd³⁺(4f³) energy-level structures in various crystal hosts

E Rukmini[†], C K Jayasankar[†] and M F Reid[‡]

† Department of Physics, S K University Post-Graduate Centre, Kurnool 518 001 (AP), India ‡ Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand

Received 29 September 1993, in final form 2 March 1994

Abstract. We have performed an in-depth correlation-crystal-field (CCF) analysis of the energy-level structures in 10 Nd³⁺(4f³) crystal systems: NdF₃, Nd₂Te₄O₁₁, NdVO₄, NdPO₄, Nd³⁺:LiYF₄, Nd³⁺:LaVO₄, Nd³⁺:LaCl₃, Nd³⁺:BaY₂F₈, Nd³⁺:YAIO₃ and Nd³⁺:LuAIO₃. A model Hamiltonian employing 20 free-ion parameters, appropriate one-electron crystal-field interaction parameters and also selected two-particle CCF interaction parameters was diagonalized within the complete 364 *SLJMJ* basis set of the 4f³ electronic configuration. Inclusion of the fourth-rank $g_2^{(4)}$, $g_{10A}^{(4)}$ and $g_{10B}^{(4)}$ CCF operators in the phenomenological energy-level fits yields an overall improved agreement between calculated and empirical energy levels besides eliminating major discrepancies between calculated and observed crystal-field splittings within the *anomalous* ²H(2)_{11/2} multiplet of Nd³⁺ ion. The fits are also in qualitative agreement with the *ab initio* calculations of CCF effects for lanthanide ions.

1. Introduction

The locations and assignments of the energy levels from the discrete electronic spectra of the $4f^{N}$ configurations in solids are in general well calculated using a model Hamiltonian that involves the adjustment of both free-ion and crystal-field parameters [1–16]. The model often gives a good fit to most of the data, but certain 'anomalous' multiplets remain poorly fitted [17–24]. Notably ${}^{1}D_{2}$ of Pr^{3+} [18], ${}^{2}H(2)_{11/2}$ of Nd^{3+} [21], ${}^{5}D_{1}$ and ${}^{5}D_{2}$ of Eu^{3+} [23], ${}^{6}I_{17/2}$ of Gd^{3+} [24], ${}^{3}K_{8}$ of Ho^{3+} [24] and ${}^{1}G_{4}$ and ${}^{1}D_{2}$ of Tm^{3+} [13] multiplets remain poorly fitted when the one-electron crystal-field parameters are optimized using all the observed energy levels. When a similar pattern exists for a particular lanthanide ion in many different crystal hosts, it is clear that either new insights on the missing interaction mechanism may be looked into in detail or the model Hamiltonian needs to be extended beyond the one-electron crystal field.

Garcia and Faucher [17–19] identified the missing interaction as configuration interaction due to the excited configurations and suggested including the excited configuration $4f^{N-1}5d^1$ together with the ground configuration $4f^N$ for the crystal-field analysis of trivalent lanthanides. The abnormal behaviour of the ¹D₂ level of Pr³⁺:PrCl₃ has been removed considerably [18] by taking into account the configuration interaction between $4f^2$ and $4f^15s^1$ through the odd-rank crystal-field parameters. Later on [19], the discrepancy between experimental and calculated splitting of ¹D₂ multiplet has been completely eliminated by taking into account the multiconfiguration-interaction effects ($4f^16s^1$ and $4f^16p^1$) on the ground configuration ($4f^2$) for Pr³⁺:PrCl₃. This parametrization scheme has the difficulty of being applied to configurations other than f^2 and f^3 configurations, since f^3 itself is a complicated system due to the size of the problem—364 levels for the ground configuration $4f^3$ and 910 levels for the next excited configuration $4f^25d^1$. The same group has treated this problem in a different way by modifying the reduced matrix elements for the abnormal multiplets ${}^{2}H(2)_{11/2}$ of Nd³⁺ [21], ${}^{2}H(2)_{11/2}$ of Er³⁺ [22] and ${}^{5}D_{1}$ and ${}^{5}D_{2}$ of Eu³⁺ [23] and obtained a good fit for the abnormal multiplets without affecting other multiplets. The modification of the reduced matrix elements is only a mathematical trick and failed to identify any specific interaction that allows one to modify the reduced matrix elements.

On the other hand, modification of the one-electron crystal field for the analyses of lanthanide spectra has been suggested by Judd [25, 26], and has been applied to several systems with satisfactory results [12–14, 24, 27–35]. Modification of the one-electron crystal field involves the inclusion of spin-correlated crystal field (SCCF) or correlation crystal field (CCF) due to many-electron (correlation) effects in the model Hamiltonian, where the former considers few orthogonal operators and the latter considers all possible orthogonal operators. The SCCF operators are simply related to a small number of CCF operators. Yeung and Newman [36] identified the orbitally correlated crystal-field (LCCF) parametrization, and the analysis of SCCF and LCCF for Pr^{3+} :LaCl₃ and Er^{3+} :LaCl₃ yields that SCCF effects are more influential than LCCF effects. CCF parametrization is preferable to SCCF analyses since the CCF analyses involve consideration of all the possible orthogonal correlation operators and also CCF analyses are in agreement with the *ab initio* calculations [37].

The construction of orthogonal operators to represent CCF effects in the f^N configuration of lanthanide and actinide ions is discussed and is emphasized from the energy-level analysis of Ho³⁺:LaCl₃ and Gd³⁺:LaCl₃ [31]. The g₃⁽⁶⁾ operator was found to be useful to correct the anomalous multiplets ³K₈ of Ho³⁺ and ⁶I_{17/2} of Gd³⁺ [31]. The anomalous ²H(2)_{11/2} multiplet of Nd³⁺:Y₃Al₅O₁₂, LaCl₃, LiYF₄, LaF₃, NdAlO₃ and Na₃[Nd(oxydiacetate)₃]·2NaClO₄·6H₂O has been investigated, and it is suggested that correlation effects represented by the g₂⁽⁴⁾, g_{10A} and g_{10B}⁽⁴⁾ operators could correct the problem [32]. The same CCF operators were used to analyse the energy-level schemes of Nd(H₂O)₉(CF₃SO₃)₃ and Nd³⁺:CsCdBr₃ [35]. Similar results were obtained for Er³⁺ in various crystal hosts [38, 39]. CCF analysis for an actinide compound (Np³⁺:LaCl₃) reveals that the operators g_{10A}⁽⁴⁾, g_{10B}⁽²⁾ and g₄⁽⁴⁾ have a significant influence on the energy-level fit [34]. Line-strength analysis using the eigenvectors from a CCF fit yields an improved fit for Nd³⁺:Y₃Al₅O₁₂ [40], particularly for the anomalous multiplets (such as ²H(2)_{11/2}) for which the crystal-field fit is improved.

The splitting of the ground multiplet of Gd^{3+} is of interest because it is dominated by effects that are normally masked by the one-electron crystal field, such as the relativistic crystal-field and correlation effects [31]. It has been suggested that the SCCF has an important effect on this multiplet, but an attempt to include appropriate values for the k = 2 SCCF in the parametrization of the Gd^{3+} :LaCl₃ spectrum yields unsatisfactory results. In some way this is unfortunate, since parameter fits to the optical spectrum may not give us any information about the parameters affecting the ground-state splitting. Nevertheless, Gd^{3+} is particularly interesting because the diagonal matrix elements of the one-electron crystalfield operators vanish. Therefore correlation and relativistic effects are expected to be more prominent.

In the studies of Nd systems, it has been found that it is necessary to obtain more refined Hamiltonians and crystal-field eigenvectors than have previously appeared in the literature before carrying out intensity calculations [35]. The crystal-field eigenvectors are usually obtained from semiempirical energy-level calculations in which a parametrized model Hamiltonian is used to fit calculated versus empirical energy-level data. The eigenvectors of the optimally parametrized model Hamiltonian are then used as basis vectors in the subsequent intensity calculations [41,42]. The details of the model Hamiltonian determine the $SLJM_J$ compositions of the crystal-field eigenvectors and the transition intensities are extraordinarily sensitive to these $SLJM_J$ compositions.

We have also noticed that the crystal-field levels were not analysed with a uniform free-ion part of the model Hamiltonian. For example, Gruber, Morrison *et al* [43–45] and Lakshman *et al* [46] have never considered the T^i , M^j and P^k parameters; Caro, Porcher and Faucher's group [9, 11, 16, 21] have not considered the M^j and P^k parameters; whereas Richardson [8, 13, 14, 28, 30, 41, 42], Reid [12, 31–34] and Carnall *et al* [15] took all the parameters into consideration. In order to have a meaningful comparison and discussion of atomic parameters in different environments, it is always preferable to use a uniform \hat{H}_A model. As mentioned above, it is essential to reanalyse the Nd energy-level data with a uniform model Hamiltonian that includes CCF operators in the crystal-field model Hamiltonian. In this paper, we report results obtained from the new energy-level analyses carried out for Nd³⁺ in 10 different hosts (or compounds). The systems are NdF₃, Nd₂Te₄O₁₁, NdVO₄, NdPO₄, Nd³⁺:LiYF₄, Nd³⁺:LaVO₄, Nd³⁺:LaCl₃, Nd³⁺:BaY₂F₈, Nd³⁺:YAlO₃ and Nd³⁺:LuAlO₃.

The main objectives of the present study are: (i) to obtain an improved and more accurate characterization of the $4f^3$ energy parameters for Nd³⁺ ion in the 10 systems identified above; (ii) comparison of the phenomenological atomic (free-ion) and crystal-field parameter values across the 10 systems; (iii) comparison of the results obtained without and with the inclusion of CCF interactions; (iv) comparison of calculated versus observed crystal-field levels within the 'anomalous' ${}^{2}H(2)_{11/2}$ multiplet; and (v) comparison of the ratios of phenomenological two-particle crystal-field parameters to one-particle crystal-field parameters of equal rank with that of *ab initio* calculations.

2. Energy-level fits

The model Hamiltonian used in this study can be written as [3, 30-37]

$$\hat{H} = \hat{H}_{A} + \hat{H}_{CF} + \hat{H}_{OCCF} \tag{1}$$

where \hat{H}_A contains the isotropic (atomic) parts of \hat{H} , \hat{H}_{CF} the one-electron part of the crystalfield interactions and \hat{H}_{OCCF} the correlation (many-electron) crystal-field interactions.

The \hat{H}_A operator is defined as [3]

$$\hat{H}_{A} = E_{ave} + \sum_{k} F^{k} \hat{f}_{k} + \xi_{SO} \hat{A}_{SO} + \alpha \hat{L} (\hat{L} + 1) + \beta \hat{G} (G_{2}) + \gamma \hat{G} (R_{7}) + \sum_{i} T^{i} \hat{t}_{i} + \sum_{j} M^{j} \hat{m}_{j} + \sum_{k} P^{k} \hat{p}_{k}$$
(2)

where k = 2, 4, 6; i = 2, 3, 4, 6, 7, 8; j = 0, 2, 4. The various operators $(\hat{f}_k, \hat{A}_{SO}, \hat{L}, \hat{G}, \hat{f}_i, \hat{m}_j \text{ and } \hat{p}_k)$ and parameters $(E_{ave}, F^k, \xi_{SO}, \alpha, \beta, \gamma, T^i, M^j \text{ and } P^k)$ in equation (2) are defined and explained in detail in the literature [1-3]. The parameters are defined as central field (E_{ave}) , two-body electrostatic repulsion (F^k) , two-body configuration (α, β, γ) , three-body configuration (T^i) , spin-orbit (ξ) , spin-other-orbit (M^j) and electrostatically correlated spin-orbit (P^k) interactions.

Most of the analyses of energy levels of the lanthanide $4f^N$ configuration use a oneelectron crystal-field Hamiltonian to model the interaction of the 4f electrons with the ligands as [1-16]

$$\hat{H}_{\rm CF} = \sum_{k,q} B_q^k C_q^{(k)} \tag{3}$$

where

$$C_{q}^{(k)} = \sum_{i} C_{q}^{(k)}(i)$$
(4)

and $C_q^{(k)}(i)$ is a spherical tensor operator for the *i*th f electron. The k and q are symmetrydependent labels: k = 2, 4, 6 and $q = -k \leq q \leq k$. The $B_q^k(B_{kq})$ are phenomenological one-particle crystal-field parameters.

To take into account the correlation (many-electron) effects, one requires two-body operators. It is possible to write a general parametrization in the form [27, 33]

$$\hat{H}_{CCF} = \sum_{k_1, k_2, K} B_Q^K(k_1, k_2) \sum_{i>j} [u^{(k_1)}(i)u^{(k_2)}(j)]_Q^{(K)}$$
(5)

where the $u^{(k)}$ are unit tensor operators and *i* and *j* label the f electrons. The quantum numbers k_1 and k_2 can range from 0 to 6, *K* can run through the even integers from 0 to 12, and *Q* takes values from -12 to +12 including zero. B_Q^K are phenomenological two-particle crystal-field parameters.

The parametrization of equation (5) can be thought of as an extension of Coulomb interaction (F^k , k = 2, 4, 6) to take into account non-spherically symmetric effects. These operators have the disadvantage of not being orthogonal over the f^N configuration. Judd [26] has given an alternative parametrization, which is an extension of Racah's E^i parameters. In Judd's notation the orthogonal CCF is written as

$$\hat{H}_{\text{OCCF}} = \sum_{i,K,Q} G_{iQ}^{K} g_{iQ}^{(K)}.$$
(6)

Judd's OCCF operators have several advantages. Unlike the operators in equation (5), OCCF operators are orthogonal over the f^N configuration. They also have well defined transformation properties under the parentage groups used to label the states of f^N (U_{14} , etc) [26, 31].

A serious problem with the parametrization of either equation (5) or equation (6) is the number of extra parameters that need to be considered. There are 43 CCF or OCCF parameters [31–33]. The enormous number of possible parameters makes simply adding them to the fit completely impracticable. In order to make progress, the only possible approach seems to be to seek out features of the spectra that are particularly sensitive to certain operators, as carried out for Gd^{3+} [31], Nd^{3+} [32] and Np^{3+} [34] energy-level analysis. Li and Reid [32] found that the $G_2^{(4)}$, $G_{10A}^{(4)}$ and $G_{10B}^{(4)}$ parameters were particularly important for the ²H(2)_{11/2} anomalous multiplet of Nd^{3+} .

Thus the analysis of energy-level data of Nd³⁺ systems has been carried out by using the model Hamiltonian (equation (1)) that consists of 20 free-ion parameters (equation (2)), appropriate one-electron crystal-field parameters (equation (3)) plus three CCF parameters $(G_2^{(4)}, G_{10A}^{(4)} \text{ and } G_{10B}^{(4)}$ of equation (6)).

3. Calculations

All energy-level calculations were carried out by diagonalizing the total (atomic plus crystal-field) Hamiltonian within the complete $SLJM_J$ basis set of the 4f³ electronic configuration. In our parametric fits of calculated to experimental energy-level data, 16 of the 20 parameters in \hat{H}_A (equation (2)) were used as independent fitting variables. Four of the atomic parameters, M^2 , M^4 , P^4 and P^6 , were constrained according to $M^2 = 0.56M^0$, $M^4 = 0.36M^0$, $P^4 = 0.75P^2$ and $P^6 = 0.50P^2$. The crystal-field Hamiltonian was treated in two different ways in the fitting calculations: (1) no CCF, only the appropriate one-electron crystal-field parameters were used in the calculations; and (2) data fits were performed using the one-electron crystal-field and three CCF parameters.

While introducing the CCF parameters in the fit in the second stage, the ratios of q components of CCF parameters were assigned according to the ratios of q components of B_q^k parameters that were found without CCF parameters. For example, the parameter $G_{10A}^{(4)}$ was assigned to [32]

$$g_{10A}^{(4)} = g_{10AO}^{(4)} + \sum_{Q \neq 0} g_{10AQ}^{(4)} (B_Q^4 / B_0^4).$$
⁽⁷⁾

In every fit F^k , ξ and one-electron crystal-field parameters along with CCF parameters were allowed to vary.

All of the empirical energy-level data analysed here were taken directly from the literature [4, 6, 9–11, 16, 47–49] and were used without making any reassignments. The systems examined were NdF₃ [6], Nd₂Te₄O₁₁ [16], NdVO₄ [11], NdPO₄ [11], Nd³⁺:LiYF₄ [21], Nd³⁺:LaVO₄ [11], Nd³⁺:LaCl₃ [10, 47], Nd³⁺:BaY₂F₈ [48], Nd³⁺:YAIO₃ [4] and Nd³⁺:LuAIO₃ [4, 9]. The crystal-field symmetries assumed for these systems in the present study are: D_{3h} for Nd³⁺:LaCl₃ [10]; C_{2v} for NdF₃ [6], Nd³⁺:BaY₂F₈ [48], Nd³⁺:LaVO₄ [11] and NdPO₄ [11]; D_{2d} for NdVO₄ [11] and Nd³⁺:LiYF₄ [21]; and C_s for Nd₂Te₄O₁₁ [16], Nd³⁺:YAIO₃ [9] and Nd³⁺:LuAIO₃ [9]. However, the exact site symmetry for Nd³⁺:LaVO₄ and NdPO₄ is C₁ for which 27 different real and imaginary crystal-field parameters are possible, which may not produce consistent parameters for practical purposes.

4. Results and discussions

The atomic and crystal-field parameters of Nd³⁺ ion in 10 systems without and with CCF obtained from the systematic model Hamiltonian and also experimental and calculated energies for some systems are presented in tables 1–5. The parameters under 'No CCF' are obtained without correlation crystal-field parameters in the model Hamiltonian. Similarly under 'CCF' are represented the parameters that are obtained by including CCF parameters in the model Hamiltonian. In the tables, N is the number of energy levels included in the fitting of energy-level calculations, σ denotes the RMS deviation between observed and calculated energies, the numbers shown in parentheses are estimates of the uncertainties in the fitted parameters and the parameters in square brackets were held fixed in the fitting calculations. The results are discussed for each system separately (sections 4.1 to 4.10). The overall results of the parametrization are discussed in sections 4.11 to 4.13.

Table 1. Experimental energies and differences (Δ) between experimental and calculated energies of anomalous ²H(2)_{11/2} multiplet of Nd³⁺ in different systems along with σ values. All values are in cm⁻¹.

System	E ^a cxpt	$\Delta_{\rm B}^{\rm b}$	Δ_G^c	System	E ^a _{expt}	$\Delta^{\rm b}_{\rm B}$	Δ_G^c
NdF3	16 003	-32	-10	Nd ³⁺ :LaVO ₄	15924	-17	5
÷	16 04 1	-8	0		15924	24	-22
	16 057	-2	4		15961	-5	8
	16 067	-14	-15		15989	0	2
	16111	5	3		16020	14	1
	16 179	27	2		16 052	20	-3 <u>,</u>
σ		±18.4	±7.6	σ		±15.74	±9.89
Nd ₂ Te ₄ O ₁₁	15814	73	21	Nd ³⁺ :LaCl ₃	15906	-1 9	-10
	15 838	66	-20		15948	19	7
	15 891	-18	2		15922	-15	-5
	15 933	9	5		15954	0	-2
	15 986	53	10		15 960	I	-13
	16 004	55	8		15966	-9	-1
σ		±51.5	±13.1	σ		±13.10	±7.62
NdVO₄	15787	-49	19	Nd ³⁺ :BaY ₂ F ₈	15917	-77	-29
·	15 820	23	-11		15969	-34	-26
		—	_		15981	-39	-23
					16 055	7	3
	15 866	-7	-31		16115	53	9
	15966	77	47		16 155	62	32
σ		±47.19	±30.22	σ		± 50.7	±23.0
LiYF4	15 941	-70	-52	Nd ³⁺ :YAlO ₃	15 858	-34	-9
	15987	-25	-26		15893	-3	7
	16013	-18	-14		15903	-11	-18
	—	—	—		_	<u> </u>	<u> </u>
	16077	4	5		15995	12	1
	16158	58	49		16095	40	13
σ		±42.67	±34,60	σ		±24.5	± 11.0
NdPO4	15960	-22	_	Nd ³⁺ :LuAlO3	15 841	-37	-10
	15960	-28	_		15 878	-11	1
	15 993	-18	_		15 883	-24	-28
	16025	-5			15979	21	47
	16049	3			15988	17	-4
	16085	23			16071	26	-9
σ		±18.95		σ		±23.9	±22.8

^a Experimental values (E_{exp1}) are: NdF₃ [6], Nd₂Te₄O₁₁ [16], NdPO₄ and NdVO₄ [11], LiYF₄ [21], LaVO₄ [11], LaCl₃ [10, 47], BaY₂F₈ [48], YAIO₃ [4] and LuAiO₃ [4, 9].

^b $\Delta_B = E_{expt} - E_{calc}$ (No ccF). E_{calc} (No ccF) are obtained from the energy parameters listed under 'No ccF' of NdF₃, BaY₂F₈ and LaVO₄ in table 2; NdVO₄, LiYF₄ and LaCl₃ in table 3; Nd₂Te₄O₁₁, YAlO₃ and LuAlO₃ in table 4; and see section 4.4 for NdPO₄.

 $^{c} \Delta_{G} = E_{expt} - E_{calc}(CCF)$. $E_{calc}(CCF)$ are obtained from the energy parameters listed under 'CCF' of NdF₃, BaY₂F₃ and LaVO₄ in table 2; NdVO₄, LiYF₄ and LaCl₃ in table 3; Nd₂Te₄O₁₁, YAIO₃ and LuAIO₃ in table 4.

4.1. NdF3

Caro *et al* [6] reported the analysis of optical absorption spectrum of NdF₃ single crystal at liquid-helium temperature and identified 126 Stark levels. These 126 levels were reanalysed with a uniform model Hamiltonian by Jayasankar *et al* [8] by assuming D_{3h} as well as C_{2v}

Table 2. Atomic, crystal-field and correlation crystal-field parameters for $Nd^{3+}:NdF_3$, $Nd^{3+}:BaY_2F_8$ and $Nd^{3+}:LaVO_4$ systems^a. All values are in cm⁻¹.

	NdF3		Bal	(2F8	LaVO ₄		
Parameter	No CCF	CCF	No CCF	CCF	No CCF	CCF	
Eave	24 471	24 471(4)	24 336(21)	24 338(8)	24 227(33)	24 223(12)	
F ²	72917	72923(11)	72 625(80)	72 654(25)	72 120(100)	72.081(38)	
F^4	52 674	52 664(17)	53 086(107)	53 068(34)	52838(157)	52 879(42)	
F^{6}	35 354	35371(15)	35 425(76)	35 482(30)	35 585(156)	35 536(44)	
α	[21.10]	[21.10]	17.23(3.85)	[17.23]	21.18(5)	[21.18]	
β	[-594]	[-594]	-513(23)	[-513]	-651(38)	[-651]	
Y	[1504]	[1504]	1291(43)	[1291]	1433(74)	[1433]	
T^2	[269]	[269]	154(46)	[154]	231(62)	[231]	
T^3	[45]	[45]	42(10)	[42]	37(14)	[37]	
T^4	[74]	[74]	47(16)	[47]	80(47)	[80]	
T ⁶	[-296]	[-296]	-286(25)	[-286]	-267(30)	[-267]	
T^{7}	[293]	[293]	246(34)	[246]	365(53)	[365]	
T ⁸	[230]	[230]	249(42)	[249]	218(69)	[218]	
ξ	883	883(3)	880(10)	880(5)	875(12)	876(5)	
M^0	[1.60]	[1.60]	2.43(2.99)	[2.43]	1.49(3)	[1.49]	
P^2	[168]	[168]	286(46)	[286]	319(61)	[319]	
B_{20}	114	119(12)	-329(40)	-333(31)	-770(29)	-761(23)	
B ₂₂	-172	-162(11)	410(31)	389(22)	177(30)	203(25)	
B40	1192	1219(29)	1672(47)	1615(35)	-733(50)	-689(42)	
B ₄₂	-125	-120(21)	142(45)	85(36)	874(38)	827(31)	
B ₄₄	6	-12(20)	-314(41)	-275(33)	224(46)	247(38)	
B ₆₀	1487	1440(19)	731(43)	763(35)	-677(51)	-658(43)	
B ₆₂	235	330(22)	427(41)	361(35)	-743(42)	758(34)	
B ₆₄	-358	-331(18)	195(42)	-173(34)	-373(52)	-262(43)	
B ₆₆	870	878(17)	1029(34)	1037(27)	-313(51)	-324(42)	
$G_2^{(4)}$		580(103)	—		—	—	
$G_{10A}^{(4)}$		-533(31)	—	-880(51)	_	341(36)	
$G_{10B}^{(4)}$	—	-137(34)	<u> </u>		—		
$G_2^{(4)}/B_{40}$	—	0.48	—		—		
$G_{10A}^{(4)}/B_{40}$	_	-0.44		-0.54	—	-0.49	
$G_{10B}^{(4)}/B_{40}$	_	-0.11	—		<u> </u>	—	
N	126	126	91	91	74	74	
σ	±11.39	± 10.07	±19.56	± 17.12	±17.09	± 15.83	
S ^b	404	406	470	451	420	409	

^a See text (section 2) for definitions of energy parameters. Also see section 4 (first paragraph) for further details of the presentation of the data.

^b Crystal-field strength parameter, see section 4.12 for details.

crystal-field potential for the \hat{H}_{CF} (equation (3)). In the present work we reanalysed the energy-level data of Caro *et al* [6] and the addition of $G_2^{(4)}$, $G_{10A}^{(4)}$ and $G_{10B}^{(4)}$ parameters in the fit reduces the σ value from 11.39 to 10.07 cm⁻¹ for 126 levels (table 2). It is also found that by considering only $G_{10A}^{(4)}$ parameter in the fit the σ value is improved from 11.39 to 10.17 cm⁻¹. Similar results were also obtained for Nd₂Te₄O₁₁ (see section 4.2 and also table 4). Therefore only one CCF parameter ($G_{10A}^{(4)}$) is sufficient to reduce the σ value. The addition of CCF operators in the Hamiltonian resolves the crystal-field splitting problem of ²H(2)_{11/2} multiplet (see table 1) as the σ value has been reduced from 18.4 to 7.6 cm⁻¹. The calculated energy parameters without and with CCF for NdF₃ are given in table 2.

	Nd	VO ₄	Li	YF4	LaCl ₃	
Parameter	No CCF	CCF	No CCF	CCF	No CCF	CCF
Eave	23 970(11)	23 967(10)	24419(8)	24 418(8)	24 176(3)	24 176(3)
F^2	71 163(34)	71 137(32)	72 703(24)	72 703(24)	71 892(9)	71 893(8)
F^4	51 591(41)	51 620(39)	52 340(39)	52 337(39)	52,219(14)	52218(13)
F^6	35 318(40)	35 270(38)	35 795(32)	35 787(32)	35 489(11)	35489(11)
α	[16.50]	[16.50]	[22.10]	[22.10]	[22.12]	[22.12]
β	[548]	[-548]	[574]	[-574]	[—656]	[-656]
Y	[1485]	[1485]	[1482]	[1482]	[1583]	[1583]
T ²	[303]	[303]	[350]	[350]	[372]	[372]
T ³	[31]	[31]	[46]	[46]	[40]	[40]
T^4	[103]	[103]	[87]	[87]	[61]	[61]
T^6	[-245]	[-245]	[-299]	[299]	[-291]	[291]
T^{7}	[297]	[297]	[368]	[368]	[347]	[347]
T ⁸	[300]	[300]	[320]	[320]	[355]	[355]
ξ	869(5)	870(5)	871(6)	871(6)	879(2)	879(2)
M^0	[0.95]	[0.95]	[0.14]	[0.14]	[1.84]	[1.84]
P ²	[133]	[133]	[84]	[84]	[281]	[281]
B ₂₀	-40(30)	-10(28)	379(23)	371(23)	153(8)	153(7)
B40	359(43)	372(39)	-957(43)	-948(42)	-345(14)	-325(13)
B ₄₄	1144(27)	1104(26)	-1206(31)	1192(31)	—	—
B ₆₀	1071(38)	-1031(36)	44(39)	39(38)	-722(14)	722(13)
B ₆₄	82(37)	102(35)	-1078(31)	-1079(31)		—
B ₆₆	_	—			475(13)	471(12)
$G_{10A}^{(4)}$	_	-177(23)	_	140(45)	<u> </u>	217(21)
$G_{10A}^{(4)}/B_{40}$		-0.48	_	0.15		-0.67
N	71	71	129	129	128	128
σ	± 18.40	±17.07	±24.13	±23.79	± 8.91	±8.29
S	363	351	459	456	176	174

Table 3. Atomic, crystal-field and correlation crystal-field parameters for $Nd^{3+}:NdVO_4$, LiYF₄ and LaCl₃ systems^a. All values are in cm⁻¹.

^a See footnotes to table 2.

4.2. Nd2 Te4 O11

Absorption measurements at liquid-helium temperature have been performed on the monoclinic Nd₂Te₄O₁₁ by Cascales et al [16]. Crystal-field level analyses have also been carried out by assuming the approximate (effective) C_{2v} as well as C_s site symmetry instead of the actual C1 site symmetry for Nd. Considering 103 crystal-field levels, the fit gave the σ value of 25.8 cm⁻¹ for C_{2v} site symmetry approximation and 22.7 cm⁻¹ for C_s site symmetry approximation. In order to reduce the σ value for the abnormal ${}^{2}H(2)_{11/2}$ multiplet, they modified the reduced matrix element, reducing by a factor of 4 $(U^4/4)$, and obtained the σ value of 21.8 and 17.8 cm⁻¹ for C_{2v} and C_s site symmetries, respectively. The present analysis with uniform free-ion terms in \hat{H}_A and also without and with CCF parameters in model Hamiltonian yields improved σ value for 103 levels of Nd₂Te₄O₁₁. By adding CCF we are able to reduce the σ value from 17.7 to 12.73 cm⁻¹ for 103 levels (table 4). The inclusion of CCF in the fit reduces the σ value not only for the anomalous 2 H(2)_{11/2} multiplet but also for other levels. The σ value for 2 H(2)_{11/2} has been reduced from 51.5 to 13.1 cm⁻¹ (see table 1). It is noticed from NdF₃ (table 2) and Nd₂Te₄O₁₁ (table 4) CCF analyses that $G_{10A}^{(4)}$ parameter is more effective than the other two possible $G_2^{(4)}$ and $G_{10B}^{(4)}$ parameters [32, 35].

Table 4. Atomic, crystal-field and correlation crystal-field parameters of Nd^{3+} in $Nd_2Te_4O_{11}$, YAIO₃ and LuAIO₃^{*}. All values are in cm⁻¹.

	Nd ₂ Te ₄ O ₁₁		YA	103	LuAlO ₃		
Parameter	No CCF CCF		No CCF	CCF	No CCF	CCF	
Eave	24073(9)	24073(7)	24 120(8)	24 118(8)	24 019(28)	24018(6)	
F^2	70 858(30)	70 853(22)	70837(120)	70 826(25)	70 158(106)	70 152(19)	
F ⁴	52 870(36)	52 874(27)	50815(151)	50 826(28)	51 629(129)	51 647(23)	
F^{6}	37 757(35)	37 734(26)	35 331(172)	35 307(29)	35 056(144)	35 042(23)	
α	[21.75]	[21.75]	23.15(5.00)	[23.15]	21.02(2.33)	[21.02]	
β	[-654]	[654]	684(34)	[-684]	-638(15)	[-638]	
γ γ	[1033]	[1033]	1690(91)	[1690]	1542(77)	[1542]	
T^2	[749]	[749]	501(69)	[501]	489(56)	[489]	
T ³	[30]	[30]	37(14)	[37]	37(8)	[37]	
T^4	[85]	[85]	56(48)	[56]	67(10)	[67]	
T ⁶	[-326]	[-326]	-298(29)	[-298]	-321(23)	[-321]	
T^7	[491]	[491]	251(42)	[251]	396(37)	[396]	
T ⁸	[683]	[683]	511(74)	[511]	431(53)	[431]	
\$	871(4)	871(3)	876(8)	876(3)	875(6)	875(3)	
M^0	[0.75]	[0.75]	1.84(2.30)	[1.84]	1.72(2.00)	[1.72]	
P ²	[181]	[181]	158(36)	[158]	182(29)	[182]	
B ₂₀	359(27)	345(22)	34(32)	35(27)	-221(27)	-233(22)	
B ₂₂	-199(24)		572(20)	569(16)	629(18)	611(14)	
B_{40}	1102(40)	1263(40)	-659(41)	-618(32)	-372(35)	-314(28)	
B ₄₂	534(50)	488(40)	1045(32)	988(27)	1058(26)	964(22)	
I B ₄₂	751(53)	723(35)	-314(46)	-368(37)	60(36)	250(28)	
B44	237(42)	175(36)	-71(41)	-43(33)	-346(37)	-334(29)	
I B ₄₄	106(51)	196(35)	458(35)	422(27)	588(35)	663(27)	
B ₆₀	100(48)	51(33)	-809(47)	-870(37)	-708(44)	-1094(30)	
B ₆₂	126(48)	159(39)	532(39)	524(31)	558(33)	565(24)	
I B ₆₂	-91(45)	-85(32)	-235(42)	268(33)	-105(44)	75(33)	
B ₆₄	-526(50)	-547(35)	1207(51)	1078(45)	1483(28)	1199(32)	
I B ₆₄	316(69)	143(50)	-869(62)	-1006(48)	214(57)	700(40)	
B ₆₆	-246(42)	-324(37)	319(47)	372(36)	-201(36)	-271(28)	
I B ₆₆	10(62)	-2(47)	343(44)	292(36)	320(41)	-47(29)	
$G_{2}^{(4)}$		501(35)		_		_	
G ⁽⁴⁾ 10A		-555(40)	_	301(26)		214(17)	
G ⁽⁴⁾	—	-590(47)	—			—	
$G_2^{(4)}/B_{40}$	_	0.40	—	_	—	_	
$G_{10A}^{(4)}/B_{40}$		-0.44	-	0.49	_	-0.68	
$G_{10\mathrm{B}}^{(4)}/B_{40}$	_	-0.47				_	
N	103	103	96	96	106	106	
σ	±17.70	± 12.73	± 13.74	±11.97	±12.97	± 10.87	
S	388	396	568	577	575	578	

^a See footnotes to table 2.

4.3. NdVO₄

The absorption spectra of neat NdVO₄ were carried out at 300, 77 and 4.2 K and 71 crystal-field levels were identified [11]. The energy levels were analysed by assuming D_{2d} site symmetry with an RMS deviation of 19.4 cm⁻¹ for 71 levels. The present crystal-field analysis yields 18.4 and 17.07 cm⁻¹ without and with CCF parameter respectively. Only $G_{10A}^{(4)}$ parameter along with other parameter values are given in table 3. The inclusion of $G_2^{(4)}$ and $G_{10B}^{(4)}$ parameters did not show any improvement in the fit as noticed in the analyses of NdF₃ and Nd₂Te₄O₁₁ systems and also in [32].

4.4. NdPO₄

Antic-Fidancev *et al* [11] reported the spectroscopic data for NdPO₄ from absorption studies. The crystal-field analysis was carried out by assuming the effective C_{2v} site symmetry instead of the exact C_1 site symmetry and an RMS deviation of 18.3 cm⁻¹ for 90 crystal-field levels obtained. The present crystal-field analysis (with C_{2v} symmetry) has improved the σ value from 18.3 cm⁻¹ [11] to 16.67 cm⁻¹ for 90 crystal-field levels and the resulting parameters (in cm⁻¹) are $E_{ave} = 24\,207(31)$, $F^2 = 70\,850(109)$, $F^4 = 50\,572(171)$, $F^6 = 33\,503(178)$, $\alpha = 21.35(3)$, $\beta = -606(19)$, $\gamma = 2120(100)$, $T^2 = 504(43)$, $T^3 = 26(9)$, $T^4 = 74(11)$, $T^6 = -334(23)$, $T^7 = 433(30)$, $T^8 = 436(44)$, $\xi = 879(6)$, $M^0 = [1.84]$, $P^2 = [281]$, $B_{20} = -618(23)$, $B_{22} = 103(22)$, $B_{40} = -785(37)$, $B_{42} = 223(37)$, $B_{44} = 728(32)$, $B_{60} = -1078(49)$, $B_{62} = 850(40)$, $B_{64} = -305(44)$ and $B_{66} = -67(41)$. Each of the CCF parameters $G_2^{(4)}$, $G_{10A}^{(4)}$ and $G_{10B}^{(4)}$ were added to the fit with incredible success in solving the crystal-field splitting problems for the energy-level structure of NdPO₄. However, the σ value for the abnormal ²H(2)_{11/2} multiplet is only 18.95 cm⁻¹ without CCF parametrization (table 1).

4.5. Nd³⁺:LiYF₄

Empirical energy-level data for Nd^{3+} :LiYF₄ were taken from a study reported by da Gamma *et al* [49]. These data were fitted using a crystal-field Hamiltonian of D_{2d} symmetry (which is an approximation of the actual S₄ site symmetry of the Nd^{3+} ions in this system). The energy parameters obtained without and with CCF are given in table 3. The present CCF analysis is slightly different from the CCF analysis of Li and Reid [32] since our data set (N = 129) is different from Li and Reid's data set (N = 121). The present atomic and crystal-field parameters (without CCF) are in agreement with the earlier analysis [29].

4.6. Nd³⁺:LaVO₄

The electronic spectrum of Nd³⁺:LaVO₄ has been studied along with the crystal-field analysis for the 74 observed crystal-field levels with RMS deviation of 20.1 cm⁻¹ by assuming C_{2v} site symmetry [11]. The new crystal-field analysis without and with CCF parameters in the model Hamiltonian by assuming C_{2v} site symmetry for Nd³⁺:LaVO₄ is shown in table 2. By adding $G_{10A}^{(4)}$ parameter in the CCF analysis we obtained a satisfactory fit for all the levels along with the improved σ value for ²H(2)_{11/2} level. Addition of $G_{10A}^{(4)}$ parameter in the fit improves the σ value from 17.09 to 15.83 cm⁻¹ for 74 crystal-field levels. The effect of other CCF parameters $G_{10B}^{(4)}$ and $G_2^{(4)}$ on the fit is not of much significance.

4.7. Nd³⁺:LaCl₃

The energy-level analysis of neodymium chloride in LaCl₃ host has been widely studied and quantum-number assignments were made for all the observed levels. The recent study includes photoexcited Nd³⁺ ion in LaCl₃ by Pelletier-Allard *et al* [10] and pressure effects on crystal-field levels by Jayasankar *et al* [50]. The present analysis is similar to 128 levels at 0 GPa by Jayasankar *et al* [50] and slightly different from the Li and Reid [32] analysis. Li and Reid's analysis involves only 87 energy-level data of Crosswhite *et al* [51]. We have carried out fits using the extensive data set of Pelletier-Allard *et al* [10], where 127 energy levels were reported, plus one ²H(2)_{11/2} level from Troster *et al* [47], making a total of 128 Stark levels. The energy parameters obtained in the fit without and with CCF are given in table 3. The anomalous (²H(2)_{11/2}) multiplet of Nd³⁺:LaCl₃ in different parametrizations is shown in table 1.

5929

Table 5. Experimental energies and differences (Δ) between experimental and calculated energies of Nd³⁺ in BaY₂F₈ and YAlO₃ systems along with σ values for individual multiplets^{a,b}. All values are in cm⁻¹.

	BaY ₂ F ₈				YAlO ₃		
Level	Eexpt	$\Delta_{\rm B}$	Δ _G	Eexpt	$\Delta_{\mathbf{B}}$	Δ _G	
⁴ I9/2	0	-27	-30	0	-7	-9	
,	93	7	3	118	-28	-23	
	179	15	16	212	-7	-8	
	283	-24	-16	500	7	8	
	546	-15	-15	671	-10	-8	
σ		±18.7	±18.3		±14.4	±12.2	
⁴ I _{11/2}	1991	5	5	2023	9	7	
	2025	3	0	2097	5	3	
	2065	-2	-1	2158	-11	-10	
	2102	21	26	2264	7	10	
	2228	-12	-11	2323	-5	-4	
	2296	24	27	2378	-3	-1	
σ		±14.2	±16.2		±7.2	±6.8	
4 13/2	3935	-1	-3	3953	17	15	
11372	3975	10	7	4021	23	20	
	3991	14	-13	4092	-10	-10	
	4052	27	28	4200	14	19	
	4202	Ĩ,	12	4291	23	26	
	4252	7	10	4328	-5	_4	
	4287	5	q	4446	2	3	
σ	(20)	±12.9	±13.8		±15.5	±15.7	
4 [15/2	5829	-18	-16	5757	6	6	
-1574	5888	12	8	5893	7	5	
	5948	-19	-26	6011	-26	-26	
	6048	-4	0	6240	15	19	
	6295	-7	_9	6307	-9	-7	
	6355	0	7	6402	12	15	
	6437	13	18	6687	-2	-2	
	6498	-22	-14	6743	-24	-27	
σ		±13.9	±14.6		±15.0	±16.3	
4F2/2	11 5 19	1	1	11421	-4	6	
- 212	11611	-2	-2	11 550	13	3	
σ		±2.0	±2.0		± 8.2	±14.2	
4Fem	12,516	7	-25	12411	13	3	
* 372	12,538	-9	-12	12.447	1	16	
	12.623	33	45	12511	14	_7	
σ	10 000	±20.0	±30.6		±11.2	±10.4	
2Hom	12 655	20	0	12 561	-9	-2	
119/2	12 671	-17	1	12 593	-10	-10	
	12.726	-18 -18	a a	12 713	-11	10	
	12 812	20	á	12 742		2	
	12 857	_2	_32	12 883	18	ĩ	
~	1201	+14 5	+150	12000	+14.3	+17	
U		J-14-0	J. I.J.7		- 19.J	+, J	

Table	5	(continu	۲hei
Laple	э.	(COMUNU	icu)

⁴ F _{7/2}	13461	4	-6	13 323	-4	-4
.,-	13 549	12	17	13452	-9	-7
	13 633	12	13	13607	1	1
	13671	-37	-30	13651	6	6
ď		+205	+18.7		+58	+50
0		1.20.3	110 .7		T0.0	10.0
45am	13652	0	Û	13 565	-5	8
0372	13 659	1	1	13 589	7	š
~	10000	+07	+07	10000	+61	
0		1.0.7	±0.7		20.1	1.0.7
4 -	14 732	_5	Л	14 665	_5	_1
- 9/2	14 703	18	21	14 723	_5	2
	1/ 2/2	10	_2	14 740	14	
	14 940	10	-2	14 702	-10	-15
	14070	-10	-25	14 022	-13	-20
	14 770	JZ 195	1002	14 920	4/ 156	
σ		±16.5	1 20.5		±15.0	±13.2
211	15017		_70	15 959	-24	_0
11/2	15040	-77 _34	-27	15 202	-24	-,
	15 001	- 34	-20	15002	-5	19
	15 701	- 39	-23	(3703	-11	-10
	16055	57	, 0	15 005	10	
	16115	55 60	20	12 773	12	12
	10 135	02	32	10090	40	15
σ		±30.7	±23.0		±24.5	±11.0
40	17154	10	2	16.062	,	4
205/2	17 100	10	2	10 903	1	-4
-07/2	17201	-11	-,	17.025	2	-1
	17301	-4	4	17205	0	2
	17443	-1	-1	17293	20	10
	17449	-13	-11	1/313	-10	-13
	_	_		17 1504	9	10
			-	17450	-2	1046
σ		±9.1	±0.1		±10.36	±9,40
40	10.026	10	20	10016	10	5
07/2	10.005	10	10	10 040	12	5
	10140	10	19	10075	-3	
	10212*	-10	ر.	10 773	-2	12
_	19212		-1-14-1	19077	-23	
0		±15.0	±10.1		±15.1	±1.1
² K			_	19.245	_5	-7
⁴ Go/2	19440	0	_4	19200	17	15
9972				10250	_16	_17
				10425	-10	-11
	19 564	_2	_7	10546	24	25
	10 504	-2	_1	19.204	24	23 78
	10 627	_0	_1 _2	10 272	_2 _2	20 _10
	10.694	- 7	- 3	10072		- 10
	10712	-21		17924	-40	-21
	17/10	-9	-10	_		
	20112*	-1	-1	—	_	—
_	20113*	-10.2	 	_		<u> </u>
σ		± 10.3	±12.1		±19.4	±17.3
20.	21 020*			20.04 "	0	4
-09/2	21039"	14	12	20 803	7	0 5
	21 020	14	12	20 074	/	د

5930

Table 5. (continued)

	21077	16	19	20.955	-16	-11	_
	21112	1	10	21.041		12	
	21113	-1	19	21041		15	
		—	—	21110	U	4	
σ		±12.3	±17.0		±9.3	±8.6	
² D _{3/2}	21211	-5	2	_		_	
- 5/2	21248	3	ā				
~	21 240	J	166			—	
σ		±4.1	±0.5	_	_		
⁴ G _{11/2'}	21 338	-25	-33	21 23 1	1 7	13	
$^{2}K_{15/2}$	21 395	22	-26	21 276	-6	-9	
,	21478	27	20	21 294	14	-13	
	21510	-17	-21	21 367	-13	-16	
	21 744	28	21	21 464			
	31 704	10	10	21 404	-1	12	
	21700	12	19	21,550	15	13	
		_	—	21580	0	9	
	21911*	—	—	21630	-1	-1	
	21 988*		—	21 654	8	-7	
	22 080*		—	21718	8	14	
			_	21748	1	0	
		_	_	21834	-10		
	_			21 906	8	1	
			_	21 930	_5	_1	
~		1170	±10.7	21,550	-,- 107	-4	
0		±17.9	±19.7		Ξ9.7	±9.0	
$^{2}P_{1/2}$	23 392	3	0	23164	-1	3	
- 1/2 π		+30	ňň	2010.	+10		
Ú.		2.5.0	0.0		±1.0	±5.0	
² D _{5/2}	23 838	1	0	23 463	-27	-24	
	_			23 635	13	11	
	_			23759	14	16	
σ		+10	0.0		+191	+177	
Ū			0.0		дду, <u>т</u>	J. I. 1. 1	
$^{2}P_{3/2}$	26241	7	-1	25 981	1	4	
-/-	26340	-4	-8	26123	5	10	
~	20010		457	20120	738	171	
U I		1.5.4	<u></u> ,			±1.4	
⁴ D3/2	28 086	17	18		_		
~ 5/2	28185	-29		_			
-	20105	1020	-51	_		_	
σ		±23.9	±23.0			_	
4Dsm	28 393	6	10	_	_	_	
- 512	28 531*	_		_			
	28 670	Q	35	_			
_	20 023	-1-20 E	1055				
U		±20.0	±23.3	—		_	
² Fs/2	38 437	-12	-9		_		
σ		± 12.0	+9.0		_	_	
76		112.0			_		
² F _{7/2}	39 932	12	15	_	_	_	
σ		± 12.0	±15.0	_		_	

 a The levels marked with a star are not used in the fit. b See footnotes to table 1 related to BaY_2F_8 and YAIO_3.

- -- -

4.8. Nd³⁺:BaY₂F₈

Locations and assignments of 103 crystal-field levels of Nd³⁺:BaY₂F₈ have been reported by Joubert *et al* [48] from absorption and fluorescence measurements at low temperature (helium refrigerator temperature). We carried out energy level calculations using an approximate model Hamiltonian with C_{2v} site symmetry instead of the actual C₂ site symmetry [48]. The fit includes only 91 levels out of 103 levels reported. The levels omitted in the fit are shown with a star as they differ considerably from calculated values (table 5). Experimental energies and differences between experimental and calculated energies of Nd³⁺:BaY₂F₈ are given in table 5. Without CCF, the σ value is 19.56 cm⁻¹ for 91 levels. With the inclusion of CCF, the σ value has been reduced from 19.56 to 17.12 cm⁻¹ for 91 levels (table 2). With CCF parameters, the σ value for ²H(2)_{11/2} has been reduced from 50.7 to 23.0 cm⁻¹ (table 1).

4.9. Nd³⁺:YAlO₃

The interest in yttrium orthoaluminate $(YAIO_3)$ as a laser host material has spanned a sequence of papers reporting optical spectra [4], crystal-field splitting analysis [5, 7], luminescence properties [4], etc. [4, 5, 7, 52]. Even though a number of papers have appeared on crystal-field analysis of Nd³⁺:YAIO₃, there is no correlation between one set of energy parameters and another set of parameters, mainly due to differences in calculations as well as differences in the definitions of model Hamiltonian. For example, the parameter values obtained for Nd³⁺:YAIO₃ by Karayianis *et al* [5], Deb [7] and Faucher *et al* [52] are different from one another.

We carried out the crystal-field analysis for Nd^{3+} :YAlO₃ without and with CCF parameters in the model Hamiltonian. The point-group symmetry for Nd^{3+} at the yttrium site is C_s (C_{1h}). Thus, for C_s site symmetry, 14 independent crystal-field parameters are used to predict crystal-field splittings besides one CCF parameter. The experimental energy levels are taken from Kaminskii [4]. Tables 4 and 5 show the energy parameters and experimental energies and differences between experimental and calculated energy levels respectively for Nd^{3+} :YAlO₃. The σ value is 13.74 cm⁻¹ for 96 levels and reduces to 11.97 cm⁻¹ when CCF is added in the model Hamiltonian.

4.10. Nd³⁺:LuAlO₃

So far the reported work on the crystal-field analysis of Nd³⁺:LuAlO₃ is restricted to oneelectron crystal-field parameters only [9]. It should be pointed out that, owing to the large number of crystal-field parameters for C_s point symmetry group [9], there might exist different sets of crystal-field parameters yielding results with more or less similar quality. The present crystal-field analysis was carried out on empirical data reported by Faucher *et al* [9] and Kaminskii [4]. For 106 Stark levels, the σ value is 12.97 cm⁻¹ without CCF parameters. By adding $G_{10A}^{(4)}$ parameter, the value of σ is reduced to 10.87 cm⁻¹. The phenomenological parameters for Nd³⁺:LuAlO₃ shown in table 4 are more refined and accurate than the parameters reported by Faucher *et al* [9]. However, the present set of parameters also differs from *ab initio* calculations [9] and are close to the real part of the one-electron crystal-field parameters of Faucher *et al* [9].

4.11. Data fits, energy parameters and ab initio calculations

The parameters obtained by varying the atomic and crystal-field parameters to minimize the deviation σ for the energy levels of Nd³⁺ in 10 different hosts (or compounds), are

summarized in tables 2-4. The number of energy levels used in the fit varies from N = 129 (Nd³⁺:LiYF₄) to N = 71 (Nd³⁺:NdVO₄). Relatively large numbers of levels are used for Nd³⁺:LiYF₄ (N = 129), Nd³⁺:LaCl₃ (N = 128) and Nd³⁺:NdF₃ (N = 126) out of 182 possible levels for 4f³ configuration of Nd³⁺. The smallest data set used is N = 71 for Nd³⁺:NdVO₄.

Comparison of the crystal-field parameters obtained without and with the inclusion of CCF terms in \hat{H} are listed under 'No CCF' and 'CCF' columns respectively in tables 2–4. The standard deviation without CCF lies between 8.91 (Nd³⁺:LaCl₃) and 24.13 cm⁻¹ (Nd³⁺:LiYF₄). Out of 10 data sets examined, the Nd³⁺:LaCl₃ fit is very good since the σ value is 8.91 cm⁻¹ for N = 128 levels with only four one-electron crystal-field parameters. In each system, inclusion of the CCF terms in the crystal-field Hamiltonian produces lower σ values (except for Nd³⁺:NdPO₄). By adding CCF parameters in the \hat{H} , the greatest influence is found for Nd³⁺:Nd2Te₄O₁₁ system as the σ value is reduced from 17.7 to 12.73 cm⁻¹ for 103 crystal-field levels.

In table 1 the energy-level splitting of the anomalous ${}^{2}H(2)_{11/2}$ multiplet fit is tabulated without and with CCF. As seen from table 1, in particular for Nd³⁺:Nd₂Te₄O₁₁ and Nd³⁺:BaY₂F₈ systems, the ${}^{2}H(2)_{11/2}$ multiplet yields a poor fit with one-electron crystalfield parameters. By adding CCF parameters in the fit the σ value for this multiplet is reduced from 51.5 to 13.1 cm⁻¹ and from 50.7 to 23.0 cm⁻¹ for Nd³⁺:Nd₂Te₄O₁₁ and BaY₂F₈ systems, respectively. A similar decreasing trend in the σ value of the anomalous ${}^{2}H(2)_{11/2}$ multiplet is noticed for other systems also.

Comparing the parameter sets that are obtained without and with CCF terms in \hat{H} , we note that both the atomic and one-electron crystal-field parameters (B_{kq}) are not significantly different when CCF is introduced in \hat{H} . Identifying trends in the values of free-ion parameters (tables 2-4) is often difficult because smooth progressions are not always observed among changing coordination environments for a particular lanthanide ion. This may be due to the fact that the number of levels, N, used in the fit differs from one system to another.

Detailed *ab initio* calculations of CCF effects for the simple Pr^{3+} -Cl⁻ system have been carried out by Ng and Newman [37]. If the predicted ratios for $G_2^{(4)}/B_{40}$, $G_{10A}^{(4)}/B_{40}$ and $G_{10B}^{(4)}/B_{40}$ are examined, we find that there is consistency between *ab initio* calculations and the phenomenological parameters. The ratios predicted for $G_2^{(4)}/B_{40}$, $G_{10A}^{(4)}/B_{40}$ and $G_{10B}^{(4)}/B_{40}$ are 0.29, -0.50 and -0.15 respectively. We obtained the ratios as 0.48, -0.44 and -0.11 for Nd³⁺:NdF₃ (table 2) and 0.40, -0.44 and -0.47 for Nd³⁺:Nd₂Te₄O₁₁ (table 4). The predicted ratio from *ab initio* calculations for $G_{10A}^{(4)}/B_{40}$ is -0.50, which is consistent with our phenomenological results of -0.54 (Nd³⁺:BaY₂F₈), -0.49 (Nd³⁺:YAlO₃), -0.68 (Nd³⁺:LuAlO₃), -0.48 (Nd³⁺:NdVO₄), -0.49 (Nd³⁺:LaVO₄), -0.67 (Nd³⁺:LaCl₃) and -0.15 (Nd³⁺:LiYF₄). These results are in agreement with CCF analysis of other lanthanides [31-35].

4.12. Crystal-field strength

In order to acquire information about the strength (S) of the crystal-field effect experienced by the Nd³⁺ ion in different compounds, we have used the relationship defined by Chang *et al* [53]

$$S = \left[\frac{1}{3}\sum_{k} \left(\frac{1}{2k+1}\right) \left(B_{k0}^{2} + 2\sum_{m>0} (RB_{km}^{2} + IB_{km}^{2})\right)\right]^{1/2}.$$
(8)

Equation (8) provides a means of comparing the crystal-field strengths of different compounds on Nd^{3+} ion. The resulting values, S, obtained with the crystal-field parameters

are listed in tables 2–4. The order of magnitude (cm^{-1}) of S without CCF follows the trend:

$$\begin{split} 575(\text{LuAlO}_3) &> 568(\text{YAlO}_3) > 470(\text{BaY}_2\text{F}_8) > 459(\text{LiYF}_4) > 420(\text{LaVO}_4) \\ &> 406(\text{NdPO}_4) > 404(\text{NdF}_3) > 388(\text{Nd}_2\text{Te}_4\text{O}_{11}) > 363(\text{NdVO}_4) \\ &> 176(\text{LaCl}_3). \end{split}$$

 Nd^{3+} ion experiences relatively stronger crystal-field strength in LuAIO₃ and weaker crystal-field strength in LaCl₃ environment compared to the remaining systems. We noticed a similar trend of S parameter when CCF operators were added in Hamiltonian H.

4.13. Comparison between CCF analysis and matrix element modification to improve anomalous ${}^{2}H(2)_{11/2}$ multiplet

Our parametric fits to improve the anomalous crystal-field splitting of ${}^{2}H(2)_{11/2}$ multiplet of Nd³⁺ are far better than the procedure adopted by Cascales *et al* [16] and Faucher *et al* [21]. In table 6, we compare the ${}^{2}H(2)_{11/2}$ fit from the present analysis with that of [16] for Nd³⁺:Nd₂Te₄O₁₁. The σ value with CCF parameter for ${}^{2}H(2)_{11/2}$ has improved from 51.5 to 13.1 cm⁻¹ and is better than the reported value from matrix element modification (σ is improved from 52.4 to 13.5 cm⁻¹). The matrix element modification proposed in [16] and [21] for ${}^{2}H(2)_{11/2}$ multiplet, $\langle {}^{2}H(2)_{11/2} || U^{\lambda} ||^{2}H(2)_{11/2} \rangle$ reduced by 4, yields an improved fit only for ${}^{2}H(2)_{11/2}$ multiplet without affecting other levels and also without changing crystal-field parameter values. The adjustment of matrix element is somewhat arbitrary (only a mathematical trick), which was difficult to explain physically. Our approach has the advantage of comparing the phenomenological CCF parameters with the *ab initio* calculations.

Table 6. Energy levels for the ${}^{2}H(2)_{11/2}$ multiplet of Nd³⁺:Nd₂Te₄O₁₁ computed without and with CCF operators and comparison with the matrix element modification (in C_s site symmetry). All values are in cm⁻¹.

	Present ^a				Reported ^b			
E _{expt}	E _{calc} (No CCF)	Δ_{B}	E _{cale} (CCF)	Δ _G	Ecale	Δ	$E_{\rm cale}$	Δ
15814	15 887	-73	15 859	-21	15 888	-74	15 836	-22
15838	15904	-66	15 864	-20	15 905	-67	15 862	-24
15 891	15 909	-18	15 889	2	15911	-20	15 886	5
15933	15924	9	15928	5	15 925	8	15933	0
15986	15933	53	15976	10	15 931	55	15 988	-2
16004	15 949	55	15 996	8	15 949	55	16 007	3
$\sigma(^{2}H(2)_{11/2})$		±51.5		±13.1		±52.4		±13.5
σ (overall)		±17.7		±12.73		±22.7		±17.8

^a See table 1 (related to Nd₂Te₄O₁₁) and sections 4.2 and 4.13 for details.

^b See table 3 of Cascales et al [16] for details.

5. Conclusions

We carried out the problem of parametrizing correlation effects in the crystal-field splittings of the $4f^3$ configuration of Nd³⁺ in 10 crystal systems. The results presented here indicate

that the CCF effects for Nd³⁺ ion resolve not only the anomalous ${}^{2}H(2)_{11/2}$ multiplet fitting but also improve the overall RMS deviation. All features related to crystal-field level fits have been reinvestigated systematically with a uniform model Hamiltonian, and the overall crystal-field level parametrization of the experimental energy-level data is reasonably good. It is interesting to note that the predicted ratio from *ab initio* calculation for $G_{iQ}^{(4)}/B_{40}$ of Pr³⁺:PrCl₃ is consistent with our phenomenological results of Nd³⁺ ion and also in agreement with CCF analysis of other lanthanides and actinides.

Acknowledgment

CKJ is grateful to the Department of Science and Technology, New Delhi, for financial support under the Young Scientist Programme.

References

- [1] Dieke G H 1968 Spectra and Energy Levels of Rare Earth Ions in Crystals (New York: Wiley)
- [2] Wybourne B G 1965 Spectroscopic Properties of Rare Earths (New York: Wiley)
- [3] Hufner S 1978 Optical Spectra of Transparent Rare Earth Compounds (New York: Academic)
- [4] Kaminskii A A 1981 Laser Crystals (New York: Springer)
- [5] Karayianis N, Wortman D E and Morrison C A 1976 Solid State Commun. 18 1299
- [6] Caro P, Derouet J, Beaury L, Testa de Sagey G, Chaminade J P, Aride J and Pouchard M 1981 J. Chem. Phys. 74 2698
- [7] Deb K K 1982 J. Phys. Chem. Solids 43 819
- [8] Jayasankar C K, Richardson F S, Reid M F, Porcher P and Caro P 1987 Inorg. Chim. Acta 139 287
- [9] Faucher M, Garcia D, Antic-Fidancev E and Lemaitre-Blaise 1989 J. Phys. Chem. Solids 50 1227
- [10] Pelletier-Allard N, Pelletier R and Shertzer J 1990 J. Chem. Phys. 93 14
- [11] Antic-Fidancev E, Holsa J, Lemaitre-Blaise M and Porcher P 1991 J. Phys.: Condens. Matter 3 6829
- [12] Reid M F and Richardson F S 1985 J. Chem. Phys. 83 3831
- [13] Jayasankar C K, Reid M F and Richardson F S 1989 Phys. Status Solidi b 155 559
- [14] Jayasankar C K, Richardson F S and Reid M F 1989 J. Less-Common Met. 148 289
- [15] Carnall W T, Goodman G L, Rajnak K and Rana R S 1989 J. Chem. Phys. 90 3443
- [16] Cascales C, Antic-Fidancev E, Lemaitre-Blaise M and Porcher P 1992 J. Phys.: Condens. Matter 4 2721
- [17] Garcia D and Faucher M 1989 J. Chim. Phys. 86 961
- [18] Garcia D and Faucher M 1989 J. Chem. Phys. 90 5280
- [19] Garcia D and Faucher M 1989 J. Chem. Phys. 91 7461
- [20] Faucher M, Garcia D and Porcher P 1989 C. R. Acad. Sci. Paris 308 603
- [21] Faucher M, Garcia D, Caro P, Derouet J and Porcher P 1989 J. Physique 50 219
- [22] Moune O K, Garcia D and Faucher M 1991 J. Phys. Chem. Solids 52 513
- [23] Moune O K, Caro P, Garcia D and Faucher M 1990 J. Less-Common Met. 163 287
- [24] Crosswhite H and Newman D J 1984 J. Chem. Phys. 81 4959
- [25] Judd B R 1977 Phys. Rev. Lett. 39 242
- [26] Judd B R 1977 J. Chem. Phys. 66 3163
- [27] Newman D J and Ng B 1989 Rep. Prog. Phys. 52 699
- [28] Jayasankar C K, Richardson F S, Tanner P A and Reid M F 1987 Mol. Phys. 61 635
- [29] Jayasankar C K, Richardson F S, Reid M F, Porcher P and Caro P 1987 Inorg. Chim. Acta 139 287
- [30] Jayasankar C K and Richardson F S 1989 Phys. Status Solidi b 155 221
- [31] Reid M F 1987 J. Chem. Phys. 87 2875
- [32] Li C L and Reid M F 1990 Phys. Rev. B 42 1903
- [33] Reid M F 1992 J. Alloys Compounds 180 93
- [34] Reid M F and Li C L 1991 Eur. J. Solid State Inorg. Chem. 28 171
- [35] Quagliano J R, Richardson F S and Reid M F 1992 J. Alloys Compounds 180 131
- [36] Yeung Y Y and Newman D J 1987 J. Chem. Phys. 86 6717
- [37] Ng B and Newman D J 1987 J. Chem. Phys. 87 7096, 7110

5936 E Rukmini et al

- [38] Gruber J B, Quagliano J R, Reid M F, Richardson F S, Hills M E, Seltzer M D, Stevens S B, Morrison C A and Allik T H 1993 Phys. Rev. B 48 15 561
- [39] Renuka Devi A, Jayasankar C K and Reid M F 1994 J. Alloys Compounds at press
- [40] Burdick G W, Jayasankar C K, Richardson F S and Reid M F 1994 Phys. Rev. B submitted
- [41] May P S, Jayasankar C K and Richardson F S 1989 Chem. Phys. 138 139
- [42] Moran D M and Richardson F S 1990 Phys. Rev. B 42 3331
- [43] Chang N C, Gruber J B, Leavitt R P and Morrison C A 1982 J. Chem. Phys. 76 3877
- [44] Morrison C A and Leavitt R P 1981 J. Chem. Phys. 74 25
- [45] Gruber J B, Hills M E, Morrison C A, Turner G A and Kokta M R 1988 Phys. Rev. B 37 8564
- [46] Subramanyam Y, Moorthy L R and Lakshman S V J 1990 J. Phys. Chem. Solids 51 1231
- [47] Troster T, Gregorian T, Johannsen P G and Holzapfel W B 1990 High Press. Res. 3 147
- [48] Joubert M F, Jacquier B, Linares C and Macfarlane R M 1991 J. Lumin. 47 269
- [49] da Gamma A A S, de Sa G F, Porcher P and Caro P 1981 J. Chem. Phys. 75 2583
- [50] Jayasankar C K, Reid M F, Troster T and Holzapfel W B 1993 Phys. Rev. B 48 5919
- [51] Crosswhite H M, Crosswhite H, Kaseta F W and Sarup R 1976 J. Chem. Phys. 64 181
- [52] Faucher M, Garcia D and Moune O K 1992 J. Lumin. 51 341
- [53] Chang N C, Gruber J B, Leavitt R P and Morrison C A 1982 J. Chem. Phys. 78 3877